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ABSTRACT 

Mathematical modeling and computer simulation may deepen our understanding 

of complex systems by testing the validity and consistency of experimental data and 

mechanisms, by generating experimentally testable hypotheses, and by providing new 

insight into the integrated behaviors of these systems. However, the application of this 

approach in biology has been hindered by the lack of software tools to build and analyze 

models. To meet this need, we have developed Dynetica – a simulator of dynamic 

networks – to facilitate model building for systems that can be expressed as reaction 

networks. A distinguishing feature of Dynetica is that it facilitates easy construction of 

models for genetic networks, where many reactions are the expression of genes and the 

interactions among gene products. In addition, it provides users the flexibility of 

performing time-course simulations using either deterministic or stochastic algorithms. 

Finally, since it is written in Java, Dynetica is platform-independent, allowing models to 

be easily shared among researchers. We anticipate that Dynetica will dramatically speed 

up the process of model construction and analysis for a wide variety of biological 

systems. 

 

Availability: Dynetica 1.0 and the example models are freely available on request.  

Contact: you@cheme.caltech.edu 
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INTRODUCTION 

 Over the past several decades, mathematical modeling has arguably become an 

important tool in biological research. Owing to the lack of detailed information for many 

biological systems, past efforts in modeling have relied on relatively simple approaches, 

such as Boolean network modeling (Glass and Kauffman 1973; Thomas 1973; Glass 

1975) and stoichiometric modeling (Clarke 1988; Fell 1992). In Boolean representations 

of gene networks, each gene is treated as having two states, ON or OFF, and the 

dynamics describes how genes interact to change one another’s states over time (Hasty et 

al. 2001). Although a Boolean model can provide insight into the qualitative behavior of 

the underlying system, it is usually overly simplified and tends to give ambiguous 

predictions (Kuipers 1986). A stoichiometric model represents the underlying system as a 

series of coupled chemical reactions. It does not require any information on the kinetics 

of the reactions, and as such is particularly attractive for systems where only sparse 

kinetic data are available or when steady-state assumptions can be justified (Varner and 

Ramkrishna 1999; Bailey 2001). Coupled with a technique called metabolic flux analysis 

(Fell 1992), stoichiometric models have played an instrumental role in shaping the field 

of metabolic engineering, by providing theoretic guidance for experimental manipulation 

of metabolic networks (Stephanopoulos et al. 1998). Recently, stoichiometric models 

have proven powerful in characterizing the underlying structure of metabolic networks by 

determining the elementary flux modes (Schuster et al. 2000) or the null space base 

vectors (Schilling and Palsson 1998) and in predicting steady-state metabolic capabilities 

of several model organisms, such as E. coli (Schilling et al. 1999; Edwards et al. 2001) 
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and H. influenzae (Edwards and Palsson 1999). But their applications are limited by their 



inability to predict the temporal evolution of these networks. To make such predictions, 

the stoichiometric structure of the reaction networks needs be supplemented with detailed 

kinetic information, resulting in kinetic models. Thanks to the rapid expansion of our 

knowledge in biology, kinetic modeling has become a realistic goal, particularly for the 

experimentally well-characterized systems. For example, kinetic models have recently 

been successfully applied to the analysis of a wide variety of biological systems, 

including bacterial chemotaxis signaling networks (Barkai and Leibler 1997; Spiro et al. 

1997), developmental pattern formation in Drosophila (Reinitz et al. 1998; von Dassow 

et al. 2000), aggregation stage network of Dictyostelium (Laub and Loomis 1998), viral 

infection (Shea and Ackers 1985; Eigen et al. 1991; McAdams and Shapiro 1995; Endy 

et al. 1997; Reddy and Yin 1999; You et al. 2002), circadian rhythms (Barkai and Leibler 

2000; Smolen et al. 2001), single cell growth (Shuler et al. 1979), and physiological 

processes (Quick and Shuler 1999; Winslow et al. 2000; Noble 2002).  

A kinetic model essentially represents a mathematical integration of existing data 

and mechanisms on a particular system, and may be useful in a number of ways. By 

providing a global view of the underlying system, a kinetic model can be used to test the 

consistency in the experimental data or mechanisms (von Dassow et al. 2000) or provide 

mechanistic explanations for counter-intuitive observations (Fallon and Lauffenburger 

2000), to facilitate the formulation of experimentally testable hypotheses (Abouhamad et 

al. 1998; Endy et al. 2000; You et al. 2002) or to test hypotheses that are difficult, 

expensive, or even impossible to explore experimentally with current technology (You 

and Yin 2002), and to provide insight into emergent properties, such as robustness 

(Barkai and Leibler 1997; Alon et al. 1999; von Dassow et al. 2000), which may be 
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otherwise difficult to grasp intuitively. As models become more “realistic” by 

incorporating more detailed data and mechanisms, they may be treated as in silico 

organisms and used to explore applied or fundamental questions that are beyond the 

underlying system per se. For example, a phage T7 model has been employed to explore 

anti-viral strategies using anti-sense mRNAs (Endy and Yin 2000), to elucidate the nature 

of genetic interactions by in silico mutagenesis at the population level (You and Yin 

2002), and to test data-mining strategies for identifying potential protein-protein 

interactions from gene expression data (You and Yin 2000). Moreover, advances in high-

throughput biotechnologies for genome-wide gene expression profiling at the 

transcription and translation level provide additional challenges and opportunities for 

mathematical modeling, which may accelerate the characterization of whole organisms 

by allowing the understanding of gene expression data (at the mRNA level or the protein 

level) in their natural context.

formulation of DNA microarray data was used to determine the timing of transcriptional 

onsets and cessation in Dictyostelium (Iranfar et al. 2001). 

Despite its potential benefits for fundamental and applied biological research, 

broader application of kinetic modeling has been hindered by the lack of powerful and 

easy-to-use software tools for model construction and analysis. This is particularly true 

for experimental biologists who are often unfamiliar with numerical methods and 

programming. This aspect is probably best evidenced by the fact that the majority of 

mathematical models of biological systems have been developed by researchers trained in 

disciplines other than biology. Further, because of the lack of such tools, most published 

models were developed from scratch, which can be a tedious and error-prone process.  

 This point is demonstrated in a recent work where kinetic 
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To address this issue, a number of programs that aim to facilitate the model 

construction and analysis have been developed in the last several years. These programs 

include Gepasi (Mendes 1993; Mendes 1997), DBsolve (Goryanin et al. 1999), E-Cell 

(Tomita et al. 1999; Tomita 2001), SCAMP (Sauro 1993), STELLA, Virtual Cell (Schaff 

et al. 1997; Schaff and Loew 1999; Schaff et al. 2000), StochSim (Morton-Firth and Bray 

1998), and STOCKS (Kierzek 2002). It would go beyond the scope of this current work 

to give a detailed account of these tools. Briefly, Gepasi, DBsolve, and SCAMP focus on 

the analysis of biochemical and metabolic networks. In addition to basic time-course 

simulations, these programs provide additional modules to explore the properties of 

metabolic networks. E-Cell aims to construct whole-cell models, and it has been applied 

to model a self-sustaining hypothetic cell (Tomita et al. 1999) and a human erythrocyte 

(Tomita 2001). Virtual Cell is advantageous in that it accounts for the diffusion of 

molecules in addition to their reactions in describing cellular processes. Distinct from 

other programs, StochSim and STOCKS simulate the system dynamics using stochastic 

algorithms instead of deterministic algorithms. These two differ in that StochSim 

employs a semi-empirical algorithm, while STOCKS uses the Gillespie algorithm 

(Gillespie 1977), which is rigorous for spatially homogenous systems. More extensive 

discussion of recent progress in the development of modeling tools may be found in 

excellent recent reviews (Arkin 2001; Loew and Schaff 2001). 

We present here a unique, general-purpose computational framework for creating, 

visualizing, and analyzing mathematical models of biological networks, including 

biochemical, metabolic, signaling, and genetic networks. We call this program Dynetica, 

or a simulator of dynamic networks. Dynetica is distinct from other software packages in 
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three aspects: (1) it facilitates the construction of kinetic models of genetic networks 

where most reactions are expression of genes; (2) it provides a visual representation of 

each model for interactive manipulation and interrogation; (3) it allows time-course 

simulations using both deterministic and stochastic algorithms. Furthermore, because it is 

written in Java, a platform-independent, object-oriented programming language, Dynetica 

can be run on most modern computers, which will facilitate the sharing of models among 

researchers. We anticipate that Dynetica will contribute significantly to advancing 

broader application of kinetic modeling in biological systems. 

 

MODELING IN DYNETICA 

Representation of generic reaction networks 

A reaction network in Dynetica consists of a list of substances that interact with 

one another via a list of reactions. Kinetics of these reactions may be specified by a list of 

parameters (Figure 1).  In addition to a tree structure, Dynetica provides a graphic 

representation of each reaction network. Figure 2 shows a hypothetical reaction network 

in Dynetica that consists of two reactions (Table 1). Each reaction is characterized by two 

basic attributes: its stoichiometry, which specifies the quantitative relationship between 

the substances in a reaction, and its kinetics, which specifies how fast (for non-

equilibrated reactions) or to what extent (for equilibrated reactions) the reaction occurs.  

Dynetica employs two modules to describe generic reaction networks: a reaction 

parser and a mathematical expression parser. The reaction parser can interpret 
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conventional chemical reaction formulas (using “→” as the separator between reactants 



and products), which specify the stoichiometry of reactions. The mathematical expression 

parser is used to interpret conventional mathematical expressions, which describe the 

kinetics of reactions. In Dynetica expressions both substances and parameters have values 

associated with them. The expression parser distinguishes between these entities by 

enclosing substance names with brackets. For example, the rate expression for reaction 

R1 in Table 1 is k1 [A] [E], which means the value of parameter k1 times the level of 

substance A and the level of substance E. The expression parser can interpret 

mathematical expressions composed of the operations and functions shown in Table 2.  

The kinetics of most chemical reactions can be formulated easily within this framework.  

Representation of genetic networks 

 Genetic networks can be loosely defined as reaction networks involving gene 

expression processes, such as transcription of genes and translation of mRNAs. In 

Dynetica, a genetic network is treated as a special reaction network that contains one or 

more genomes (Figure 3A). Here a genome is defined as an entity composed of an array 

of genetic elements, such as genes, promoters, and transcription terminators. Examples of 

genomes include genomes of cells and viruses, as well as plasmids.  

 Each genetic element is characterized by two attributes, namely, its starting and 

ending positions (in base-pair number) along the genome. A gene in Dynetica is a special 

genetic element characterized by several additional attributes: the RNA polymerase 

responsible for its transcription, the ribosome responsible for its translation, the name of 

its RNA, and the name of its protein (if the gene is to be translated), the relative 

transcription activity, and the relative translation activity. The relative transcription 
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activity is essentially a weighting factor by which RNA polymerases are allocated to 



different genes, and the relative translation activity is the weighting factor by which 

ribosomes are allocated to different genes (more precisely, to different mRNAs). Genetic 

reactions can easily be formulated in Dynetica. Figure 3B demonstrates the Dynetica 

formulation of the central dogma of molecular biology. Essentially, the information 

transfer process from gene to mRNA to protein can be represented by two reactions. The 

transcription reaction specifies the conversion of nucleoside triphosphates (NTP) into 

mRNA, and is catalyzed by the gene and RNA polymerase (RNAP). The translation 

reaction specifies the conversion of amino acids (AA) into the protein, and is catalyzed 

by the mRNA and the ribosome. 

Because expression of most genes follows the pattern as specified by the central 

dogma, Dynetica automatically creates a transcription reaction and a translation reaction 

for each gene that the user specifies in a genome. In addition, it also generates two 

reactions to represent the degradation of the gene products, the mRNA and the protein. In 

setting up the transcription reaction, we assume that the limiting step is the elongation of 

the RNAP, and the transcription follows Michaelis-Menten kinetics with NTP as the 

substrate. For the translation reaction, we assume that the limiting step is the elongation 

of the ribosome, and the reaction follows Michaelis-Menten kinetics with AA as the 

substrate. Note that these automatically generated reactions are essentially “first-order 

approximations” by the program based on the genetic information provided by the user. 

These approximations are useful because they provide an initial estimate of gene 

expression dynamics. The user can then refine the stoichiometry and kinetics of such 

reactions as needed.  
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Simulation 

 A model in Dynetica gives a schematic representation of the corresponding 

system, but it does not specify how the system evolves over time. The latter will be 

determined by an algorithm. Here, an algorithm is defined as the scheme by which the 

system represented by the model will be updated as a function of time. It can be either 

deterministic or stochastic. Deterministic algorithms include all the traditional numerical 

algorithms that are designed to solve coupled differential equations, such as fixed or 

variable time-step Runge-Kutta algorithms. A deterministic algorithm is appropriate 

when the continuity of the system can be justified.  

 Stochastic algorithms focus on updating reactions in the system. For example, a 

widely used stochastic algorithm proposed by Gillespie (Gillespie 1977) updates a 

reactive system by determining, at each step, which and when the next reaction will 

occur. A stochastic algorithm is appropriate for a spatially homogeneous system where 

the interacting molecules are few that fluctuations in their numbers are significant. A 

number of researchers have strongly advocated the use of stochastic algorithms for 

modeling biological systems, especially for intracellular processes (Arkin et al. 1998; 

Goss and Peccoud 1998; Morton-Firth and Bray 1998; Kierzek 2002). 

 The structure of a reaction network model in Dynetica is flexible enough to allow 

simulations by either deterministic or stochastic algorithms. Currently we have 

implemented three different algorithms: a fixed time-step 4th order Runge-Kutta 

algorithm, a variable time-step 4th order Runge-Kutta algorithm, and Gillespie’s 

algorithm. By applying an algorithm to a model, we can generate the dynamics of the 

underlying system. Shown in Figure 4 are the results of deterministic and stochastic 
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simulations with the model in Figure 2. In this particular case, both approaches generate 

qualitatively the same result: substance A is gradually converted into substance B until 

equilibrium is reached, whereas the level of substance E remains constant over time. 

However, the details of the dynamics generated from these different approaches are quite 

different. For instance, there are no fluctuations in the substance concentrations as 

predicted by the deterministic simulation, but fluctuations are evident in the result from 

the stochastic simulation. In addition, because of the stochastic aspect of the Gillespie 

algorithm, every new simulation starting from the same initial condition will generate 

different dynamics (Gillespie 1977). 

 In addition to simulating the temporal evolution of a reaction network, Dynetica 

provides the basic functionality to explore how the dynamics of the network responds to 

the perturbations to the network, in terms of variations in parameter values or the initial 

levels of substances. This feature is desirable for simulating dosage curves and for 

identifying key system parameters that are important in determining overall behaviors of 

the system. 

APPLICATIONS 

 To demonstrate the application of Dynetica we use it to build two models: one for 

the Dictyostelium aggregation stage network, and the other for the intracellular growth 

cycle of phage T7. The aggregation stage network model is shown here as an example of 

a general reaction network. The phage T7 model shown as an example of a genetic 

network. 
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A Dictyostelium aggregation stage network model 

 Amoebae of Dictyostelium discoideum grow as independent cells in the soil, but 

aggregate and develop as a multicellular organism under starvation. It has been proposed 

that the aggregation stage network, which consists of seven interacting components, is 

responsible for regulating the expression of developmental genes in homogeneous 

populations of Dictyostelium shortly after starvation (Loomis 1998; Soderbom and 

Loomis 1998). Previously, a kinetic model was developed to analyze the dynamics of this 

signaling network (Laub and Loomis 1998). The model accounted for the interactions 

among seven molecular species, and was shown to be able to predict the oscillations in 

the enzyme activities during Dictyostelium development. 

 Based on (Laub and Loomis 1998), we used Dynetica to reconstruct the 

aggregation stage network model (Figure 5A, Table 3). Figure 5B shows a representative 

simulation result demonstrating stable oscillations in levels of the interacting 

components.  

A phage T7 model 

Phage T7 is a lytic virus that infects bacterium E. coli. By incorporating the 

existing experimental data and mechanisms of T7 biology, we previously developed a 

genetically structured kinetic model to account for the intracellular life cycle of phage T7 

(Endy et al. 1997; Endy et al. 2000; You et al. 2002). Various versions of this model were 

employed to explore anti-viral strategies (Endy et al. 1997; Endy and Yin 2000), effects 

of host physiology on phage development (You et al. 2002), design principles of phage 

T7 (Endy et al. 2000; You and Yin 2001), genetic interactions among deleterious 
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mutations (You and Yin 2002), and data-mining strategies for identifying potential 

protein-protein interactions from gene expression data (You and Yin 2000). 

The model presented here is a simplified version of the previous models (Figure 

6). The major difference between the current model and the previous ones is that a 

simplified genome is used here (Figure 6A). This simplified genome contains 20 essential 

T7 genes. The regulatory effect of promoters and transcription terminators is accounted 

for by specifying the relative transcription activity of each gene. As a result, RNA 

polymerases are allocated to different genes based on their relative transcription 

activities, whereas in the complete model RNA polymerases are allocated based on the 

relative strengths of promoters (You et al. 2002). The resulting T7 reaction network 

contains 91 reactions and 55 substances, excluding genes (Figure 6B). In this network, 

the reactions describing expression of genes and degradation of gene products are 

automatically generated by Dynetica. Although the network diagram is overall complex, 

it highlights several features of the system. First, most substances are involved in two 

reactions, one for production (green line) and the other for consumption (red line). 

Second, several nodes (as labeled) are highly connected. For example, the nodes for 

amino acid and NTP are highly connected because these two substances are used as 

precursors for transcription and translation reactions, respectively. Likewise, the nodes 

for T7 RNAP and ribosome are highly connected because they are used as catalysts for 

transcription and translation reactions, respectively.  

Like the more comprehensive model, the current model accounts for the major 

steps of T7 infection: transcription of viral genes, translation of the resulting mRNAs, 

interactions between regulatory proteins, host DNA degradation and T7 DNA replication, 
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procapsid assembly, and eventually production of phage progeny. A representative 

simulation result showing the time courses of three viral components is presented in 

Figure 6c. It illustrates the synthesis of T7 DNAs and procapsids, and the packaging of 

T7 DNAs into procapsids to form viral progeny. Overall, this simplified model captures 

the main features of viral growth as predicted by the more comprehensive model. 

DISCUSSION 

 We have developed Dynetica to facilitate the construction, visualization and 

analysis of mathematical models for biological systems that can be formulated as a 

coupled system of reactions. With Dynetica, the user need only specify the chemistry of 

this system, that is, what components are in the system and how they interact. 

Throughout the model-building process, the user need not write any differential 

equations, or formulate numerical algorithms to conduct simulations. Instead, the 

numerics is automatically handled by the program. Thanks to this feature, the user can 

focus on the model itself and its practical relevance rather than the technical aspects of 

computer simulation. Furthermore, by providing a graphic view of the underlying 

reaction network Dynetica will facilitate the interactive manipulation and analysis of each 

model. 

Dynetica’s ability to perform both deterministic and stochastic simulations on the 

same model may facilitate comparative studies of these two approaches. Deterministic 

algorithms have been traditionally used to simulate the dynamics of a system of coupled 

reaction network.  However, the small numbers of interacting components in some 

intracellular processes may become an issue. First, the continuity of these systems is no 
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longer warranted. Second, fluctuations in the concentrations of the reacting components 



may significantly impact the system dynamics. Because of these issues, some researchers 

have questioned the use of deterministic algorithms in simulating the behaviors of 

biological systems, and suggested using stochastic algorithms instead (Arkin et al. 1998; 

Goss and Peccoud 1998; Morton-Firth and Bray 1998; Kierzek 2002). They have shown 

that stochastic simulations often produce dynamics drastically different from what is 

predicted by deterministic simulations. Moreover, they have argued that a stochastic 

simulation more accurately and more completely accounts for the temporal evolution of a 

well-stirred chemical reaction network than does a deterministic algorithm (Gillespie 

1977; McAdams and Arkin 1998). Nonetheless, since a stochastic algorithm only gives 

accurate solutions for a well-stirred system, it may not be applicable for intracellular 

processes. It is unclear whether it is more appropriate than a deterministic approach in 

modeling such processes. To this end, Dynetica may be employed to simulate a system 

using both deterministic and stochastic approaches and explore which approach is more 

appropriate in a particular situation. 

 With its present underlying software structure, Dynetica can easily be extended in 

its functionality and flexibility. It has a software module that automates the construction 

of a genetic network model based on the organization of genetic elements along the 

genome. In achieving this functionality, we made simplifying assumptions regarding the 

organization of the genome. For each gene, Dynetica will automatically generate a 

transcription reaction, a translation reaction, and degradation reactions for the resulting 

mRNA and protein. However, in reality, there are also genes for tRNA and rRNA that do 

not have protein products. Future modifications of the program will be needed to 

represent and distinguish different kinds of genes. New numerical algorithms can be 
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implemented, so that the user will have the freedom in choosing the most appropriate one 

for a given situation. Further, we are developing model templates for different types of 

biological systems, such as signaling pathways, viruses, and single cells. Like the 

document templates one may encounter in many word-processing programs such as 

Microsoft® Word, these templates will further facilitate the model-building process, 

particularly for new users. An emerging challenge for the modeling community lies in the 

interchange of models constructed using different software tools, as listed in the 

introduction section. Recently, there have been many efforts toward developing modeling 

standards for biology modeling, such as the SBML (Systems Biology Markup Language) 

project (http://www.cds.caltech.edu/erato) and the CellML (Cell Markup Language) 

project (http://www.cellml.org). To provide exchangeable mathematical models, we plan 

to implement software modules to import models constructed with other tools, or written 

in standard modeling languages. Finally, we plan to implement software modules to 

annotate models; we expect this functionality will further facilitate the communication of 

mathematical models as a representation of the underlying biological systems. 

The evolution of biological network modeling can be compared to that of the 

molecular dynamics simulation, which uses physical principles to compute the structure 

and dynamics of biological molecules. Although the development and use of molecular 

dynamics simulation programs were initially much restricted to researchers with strong 

background in theoretic physics and mathematics, it is the development of powerful and 

user-friendly tools that has established this computational approach as a routine tool for 

structural studies of natural or synthetic biological molecules (Loew and Schaff 2001). 

Similarly we envision that, Dynetica, together with other emerging modeling tools, will 
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promote a broader application of mathematical models in cell biology by serving as a 

computational platform to create, analyze and exchange such models. 
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FIGURE LEGENDS 

Figure 1. Representation of reaction networks in Dynetica. Each reaction network is 

represented as three lists: substances, reactions through which substances interact with 

one another, and parameters that specify the kinetics of the reactions. 

 

Figure 2. Screenshot of a hypothetical reaction network in Dynetica. The left panel shows 

the tree-structure view of the network, and the right panel gives a graphic representation. 

In the graph a green line indicates the production of the connected substance by the 

connected reaction, a red line represents the consumption of the connected substance by 

the connected reaction, and a gray dashed line indicates that the connected substance 

affects the kinetics of the connected reaction. See text for details of the reactions. 

 

Figure 3. Formulation of genetic networks in Dynetica. (A) A genetic network in 

Dynetica is represented as a special reaction network that contains one or more genomes. 

(B) The central dogma represented in Dynetica. 

 

Figure 4. The simulation results from the reaction network in Figure 2 using both (A) 

deterministic and (B) stochastic algorithms.  

 

Figure 5. Aggregation stage network model. (A) The graphic representation of the 

reaction network. (B) A representative simulation result. The network was constructed 

based on the reference (Laub and Loomis 1998). The reactions involved in this network 
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are shown in Table 3. The parameter values for the simulation are: k1 =1.4, k2 = 0.9, k3 = 



2.5, k4 = 1.5, k5 = 0.6, k7 = 2.0, k8 = 1.3, k9 = 0.3, k10 = 0.8, k11 = 0.7, k12 = 4.9, k13 = 18, 

k14 = 1.5 (W. Loomis, personal communication). The initial levels of all substances were 

set to be 1.0, and the variable time-step 4th order Runge-Kutta algorithm was used for the 

simulation. 

  

Figure 6.  Phage T7 model. (A) The simplified T7 genome. The left panel shows a list of 

genes in the genome (not all genes are shown); the right panel shows the attributes of the 

currently selected gene. (B) The graphic representation of the reaction network. The 

reactions describing transcription and translation of genes were automatically generated 

by Dynetica. (C) A representative simulation result showing the time courses of three 

viral components.  
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Table 1. The reactions in the simple reaction network shown in Figure 2. 

Reaction name Stoichiometry Kinetics 

R1 A → B k1 [A] [E] a 

R2 B → A k2 [B] 

a The rate expression is actually written as k1 [A] * [E] in Dynetica. 
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Table 2. The mathematical operations and functions that are supported by Dynetica 

 Symbols or expressions Note 

Basic operations  +, -, *, /, ^ ‘^’ represents to the power of. 

Basic functions a sin(a), cos(a), tan(a), 

sqrt(a), log(a) 

log(a) returns the natural logarithm 

value of a 

step(a, b)  returns 1 if a ¥ b, and 0 otherwise 

compare(a, b) returns 1 if a > b, 0 if a = b, and –1 

if a < b 

pulse(a, x, b) returns 1 if a < x < b, 0 otherwise 

random(a, b) returns a random value between a 

and b 

rand() returns a random value between 0 

and 1 

min(a, b, c, …) returns the minimum value from 

the list of arguments 

Special functions a 

max(a, b, c,…) returns the maximum value from 

the list of arguments 

   a Each of the symbols (a, b, c and x ) may represent a simple variable or a mathematical 

expression. 
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Table 3. The production reactions in the aggregation stage network a 

Reaction Stoichiometry Kinetics Notes 

p_ACA → ACA k1 [ERK2] activation of ACA by ERK2 

d_ACA ACA →  k2 [ACA] degradation of ACA 

p_PKA →  PKA k3 [cAMPi] activation of PKA by cAMPi 

d_PKA PKA →  k4 [PKA] degradation of PKA 

p_ERK2 → ERK2 k5 [CAR1] activation of ERK2 by CAR1 

d_ERK2 ERK2 →  k6 [ERK2] [REGA] degradation of ERK2 

(catalyzed by REGA) 

p_REGA →  REGA k7 constant production of REGA 

d_REGA REGA→  k8 [REGA] [ERK2] degradation of REGA 

(catalyzed by ERK2) 

p_cAMPi →  cAMPi  k9 [ACA] activation of cAMPi by ACA 

d_cAMPi cAMPi →  k10[REGA][cAMPi] degradation of cAMPi 

(catalyzed by REGA) 

p_cAMPe → cAMPe k11 [ACA] activation of cAMPe by ACA 

d_cAMPe cAMPe→  k12 [cAMPe] degradation of cAMPe 

p_CAR1 → CAR1 k13 [cAMPe] activation of CAR1 by cAMPe 

d_CAR1 CAR1→  k14 [CAR1][PKA] degradation catalyzed by PKA 

a Although recent studies have suggested a slightly revised reaction network 

(http://www.biology.ucsd.edu/labs/loomis/network/laubloomis.html), the published 

model suffices to illustrate the usage of Dynetica. 
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